Si assume che \(P(B) > 0\), la quantità \(P(A | B)\) indica la probabilità che si verifichi l’evento \(A\) sapendo che (dato che) si è già verificato l’evento \(B\).
Definizione
Se \(P(B) > 0\) allora la probabilità condizionata di \(A\) dato \(B\) è definita come:
\[P(A | B) = \dfrac{P(A \cap B)}{P(B)} \]
ovvero la probabilità dell’evento intersezione (\(A{\bf \text{ e }}B\)) diviso la probabilità dell’evento condizionante.